Jump to content

Greek letters used in mathematics, science, and engineering

From Wikipedia, the free encyclopedia

Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities. Those Greek letters which have the same form as Latin letters are rarely used: capital A, B, E, Z, H, I, K, M, N, O, P, T, Y, X. Small ι, ο and υ are also rarely used, since they closely resemble the Latin letters i, o and u. Sometimes, font variants of Greek letters are used as distinct symbols in mathematics, in particular for ε/ϵ and π/ϖ. The archaic letter digamma (Ϝ/ϝ/ϛ) is sometimes used.

The Bayer designation naming scheme for stars typically uses the first Greek letter, α, for the brightest star in each constellation, and runs through the alphabet before switching to Latin letters.

In mathematical finance, the Greeks are the variables denoted by Greek letters used to describe the risk of certain investments.

Typography

[edit]

Some common conventions:

The Greek letter forms used in mathematics are often different from those used in Greek-language text: they are designed to be used in isolation, not connected to other letters, and some use variant forms which are not normally used in current Greek typography.

The OpenType font format has the feature tag "mgrk" ("Mathematical Greek") to identify a glyph as representing a Greek letter to be used in mathematical (as opposed to Greek language) contexts.

The table below shows a comparison of Greek letters rendered in TeX and HTML. The font used in the TeX rendering is an italic style. This is in line with the convention that variables should be italicized. As Greek letters are more often than not used as variables in mathematical formulas, a Greek letter appearing similar to the TeX rendering is more likely to be encountered in works involving mathematics.

Greek letters in HTML and TeX (α–μ)
Name TeX HTML
Alpha Α α
Beta Β β
Gamma Γ γ
Delta Δ δ
Epsilon Ε ϵ ε
Digamma Ϝ ϝ
Zeta Ζ ζ
Eta Η η
Theta Θ θ ϑ
Iota Ι ι
Kappa Κ κ ϰ
Lambda Λ λ
Mu Μ μ
Greek letters in HTML and TeX (ν–ω)
Name TeX HTML
Nu Ν ν
Xi Ξ ξ
Omicron Ο ο
Pi Π π ϖ
Rho Ρ ρ ϱ
Sigma Σ σ ς
Tau Τ τ
Upsilon Υ υ
Phi Φ ϕ φ
Chi Χ χ
Psi Ψ ψ
Omega Ω ω
Greek letters with typographical variations
Name Greek Letter Bold Italic Bold Italic Sans-Serif Bold Sans-Serif Bold Italic APL Double struck bold Unicode variants or similar
Alpha Α α 𝚨 𝛂 𝛢 𝛼 𝜜 𝜶 𝝖 𝝰 𝞐 𝞪 ⍺ ⍶
Beta Β β ϐ ᵝ ᵦ 𝚩 𝛃 𝛣 𝛽 𝜝 𝜷 𝝗 𝝱 𝞑 𝞫
Gamma Γ γ ᴦ ᵞ ᵧ 𝚪 𝛄 𝛤 𝛾 𝜞 𝜸 𝝘 𝝲 𝞒 𝞬 ℾ ℽ
Delta Δ δ ᵟ 𝚫 𝛅 𝛥 𝛿 𝜟 𝜹 𝝙 𝝳 𝞓 𝞭 U+2206 INCREMENT, U+2207 NABLA
Epsilon Ε ε ϵ ϶ 𝚬 𝛆 𝛜 𝛦 𝜀 𝜖 𝜠 𝜺 𝝐 𝝚 𝝴 𝞊 𝞔 𝞮 𝟄 U+2208 ELEMENT OFU+220D SMALL CONTAINS AS MEMBER
Zeta Ζ ζ 𝚭 𝛇 𝛧 𝜁 𝜡 𝜻 𝝛 𝝵 𝞕 𝞯
Eta Η η Ͱ ͱ 𝚮 𝛈 𝛨 𝜂 𝜢 𝜼 𝝜 𝝶 𝞖 𝞰
Theta Θ θ ϑ ϴ ᶿ 𝚯 𝛉 𝚹 𝛝 𝛩 𝜃 𝛳 𝜗 𝜣 𝜽 𝜭 𝝑 𝝝 𝝷 𝚹 𝞋 𝞗 𝞱 𝜭 𝟅
Iota Ι ι ᶥ ℩ 𝚰 𝛊 𝛪 𝜄 𝜤 𝜾 𝝞 𝝸 𝞘 𝞲 ⍳ ⍸
Kappa Κ κ ϰ 𝚱 𝛋 𝛞 𝛫 𝜅 𝜘 𝜥 𝜿 𝝒 𝝟 𝝹 𝞌 𝞙 𝞳 𝟆
Lambda Λ λ ᴧ 𝚲 𝛌 𝛬 𝜆 𝜦 𝝀 𝝠 𝝺 𝞚 𝞴
Mu Μ μ 𝚳 𝛍 𝛭 𝜇 𝜧 𝝁 𝝡 𝝻 𝞛 𝞵
Nu Ν ν 𝚴 𝛎 𝛮 𝜈 𝜨 𝝂 𝝢 𝝼 𝞜 𝞶
Xi Ξ ξ 𝚵 𝛏 𝛯 𝜉 𝜩 𝝃 𝝣 𝝽 𝞝 𝞷
Omicron Ο ο 𝚶 𝛐 𝛰 𝜊 𝜪 𝝄 𝝤 𝝾 𝞞 𝞸
Pi Π π ϖ ᴨ 𝚷 𝛑 𝛡 𝛱 𝜋 𝜛 𝜫 𝝅 𝝕 𝝥 𝝿 𝞏 𝞟 𝞹 𝟉 ℿ ℼ U+220F N-ARY PRODUCT, U+2210 N-ARY COPRODUCT
Rho Ρ ρ Ῥ ῥ ῤ ϱ ϼ ᴩ ᵨ ☧ 𝚸 𝛒 𝛠 𝛲 𝜌 𝜚 𝜬 𝝆 𝝔 𝝦 𝞀 𝞎 𝞠 𝞺 𝟈
Sigma Σ σ ς Ϲ ϲ Ͻ ͻ Ͼ ͼ Ͽ ͽ 𝚺 𝛔 𝛓 𝛴 𝜎 𝜍 𝜮 𝝈 𝝇 𝝨 𝞂 𝞁 𝞢 𝞼 𝞻 U+2211 N-ARY SUMMATION
Tau Τ τ 𝚻 𝛕 𝛵 𝜏 𝜯 𝝉 𝝩 𝞃 𝞣 𝞽
Upsilon Υ υ ϒ 𝚼 𝛖 𝛶 𝜐 𝜰 𝝊 𝝪 𝞄 𝞤 𝞾
Phi Φ φ ϕ 𝚽 𝛗 𝛟 𝛷 𝜑 𝜙 𝜱 𝝋 𝝓 𝝫 𝞅 𝞍 𝞥 𝞿 𝟇
Chi Χ χᵡᵪ☧ 𝚾 𝛘 𝛸 𝜒 𝜲 𝝌 𝝬 𝞆 𝞦 𝟀
Psi Ψ ψ ᴪ 𝚿 𝛙 𝛹 𝜓 𝜳 𝝍 𝝭 𝞇 𝞧 𝟁
Omega Ω ω ꭥ 𝛀 𝛚 𝛺 𝜔 𝜴 𝝎 𝝮 𝞈 𝞨 𝟂 ⍵ ⍹ U+2126 OHM SIGN, U+2127 INVERTED OHM SIGN

Concepts represented by a Greek letter

[edit]

Αα (alpha)

[edit]

Ββ (beta)

[edit]

Γγ (gamma)

[edit]

Δδ (delta)

[edit]

Εε (epsilon)

[edit]

Ϝϝ (digamma)

[edit]
  • Ϝ is sometimes used to represent the digamma function, though the Latin letter F (which is nearly identical) is usually substituted.
  • A hypothetical particle Ϝ speculated to be implicated in the 750 GeV diphoton excess, now known to be simply a statistical anomaly

Ζζ (zeta)

[edit]

Ηη (eta)

[edit]

Θθ (theta)

[edit]

Ιι (iota)

[edit]

Κκ (kappa)

[edit]

Λλ (lambda)

[edit]

Μμ (mu)

[edit]

Νν (nu)

[edit]

Ξξ (xi)

[edit]

Οο (omicron)

[edit]

Ππ (pi)

[edit]

Ρρ (rho)

[edit]

Σσς (sigma)

[edit]

Ττ (tau)

[edit]

ϒυ (upsilon)

[edit]
  • (U+03D2) represents:

Φφ (phi)

[edit]

Note: The empty set symbol ∅ looks similar, but is unrelated to the Greek letter.

Χχ (chi)

[edit]

Ψψ (psi)

[edit]

Ωω (omega)

[edit]

See also

[edit]

References

[edit]
  1. ^ Bhandari, Pritha (2021-01-18). "Type I & Type II Errors | Differences, Examples, Visualizations". Scribbr. Retrieved 2025-01-22. The probability of making a Type I error is the significance level, or alpha (α), while the probability of making a Type II error is beta (β).
  2. ^ Weisstein, Eric W. "Gamma Function". mathworld.wolfram.com. Retrieved 2025-01-22.
  3. ^ a b Katzung & Trevor's Pharmacology Examination & Board Review (9th Edition.). Anthony J. Trevor, Bertram G. Katzung, Susan B. Masters ISBN 978-0-07-170155-6. B. Opioid Peptides + 268 pp.
  4. ^ Kutner, Michael H.; Nachtsheim, Christopher J.; Neter, John; Li, William (2005). Applied Linear Statistical Models (5th ed.). New York: McGraw-Hill. pp. xxviii, 1396. ISBN 0-07-310874-X.
  5. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  6. ^ Weisstein, Eric W. "Lambda Calculus". mathworld.wolfram.com. Retrieved 2025-01-22.
  7. ^ Weisstein, Eric W. "Pomega -- from Eric Weisstein's World of Physics". scienceworld.wolfram.com. Retrieved 2022-09-06.
  8. ^ Outline for Weeks 14&15, Astronomy 225 Spring 2008 Archived 2010-06-15 at the Wayback Machine
  9. ^ Lebl, Jiří (May 16, 2022). Basic Analysis I, Introduction to Real Analysis. Vol. 1. p. 98. ISBN 978-1718862401.
  10. ^ Hartl, Michael (2010). "Tau Day – No, really, pi is wrong: The Tau Manifesto". Retrieved 2015-03-20.
  11. ^ Crilly, Tony (1994). "A Supergolden Rectangle". The Mathematical Gazette. 78 (483): 320–325. doi:10.2307/3620208. JSTOR 3620208.
[edit]